(9x)^2+(16x)^2=1024

Simple and best practice solution for (9x)^2+(16x)^2=1024 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9x)^2+(16x)^2=1024 equation:



(9x)^2+(16x)^2=1024
We move all terms to the left:
(9x)^2+(16x)^2-(1024)=0
We add all the numbers together, and all the variables
25x^2-1024=0
a = 25; b = 0; c = -1024;
Δ = b2-4ac
Δ = 02-4·25·(-1024)
Δ = 102400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{102400}=320$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-320}{2*25}=\frac{-320}{50} =-6+2/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+320}{2*25}=\frac{320}{50} =6+2/5 $

See similar equations:

| a(a^2+2a-1)-2=0 | | (9x)^2+(16x)^2=32 | | 1-0.98^x=0.5 | | x+57=5x+21 | | 16g+-11=-5 | | -10x2+5x=0 | | 2s2+8s+8=0 | | 42a^2-26a+4=0 | | 6x+6x+8x=540 | | 4u2+5u+7=0 | | (2x+1)(4x-21)=0 | | x+(0.2x)=18360 | | 4x(5-2)=x2 | | x+(0.2x)=11352 | | 8x^2+4x-21=0 | | 8b^2+256=-96b | | 5x+25=x-3 | | x+(0.2x)=120 | | 2x+25=6x+61 | | 3.296=-0.004d^2+0.144d | | 8n^2+128n=-512 | | 21x^2-39x-6=0 | | D^2=36d-324 | | 21x2-39x-6=0 | | 10x+5(0)=0 | | -0.5y=-2y | | 5x+40=x+100 | | 2(x-5)=4(x+2) | | 5x+15=4x+14 | | 4-2y+3y=9 | | n+4+8=-36 | | (5y+9)(4-y)=0 |

Equations solver categories